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SUMMARY 

A theoretical and experimental investigation of an 
Impulsively-started uniform flow, decelerating at 
specified rates, about two-dimensional cambered plates 
with included angles of 120, 180, and 240 degrees has 
been carried out. 

The results have shown that: 

1. For a given camber, the drag coefficients prior 
to the onset of deceleration are nearly identical. The 
drag coefficients after the onset of deceleration are 
simply shifted in time by an amount equal to the 
difference between the durations of their steady states. 

2. For the Models A (120 degree camber) and B (18 0 
degree camber), the drag coefficient decreases rapidly at 
the onset of deceleration, goes through zero near the 
middle of the deceleration period, and through a negative 
value at the end of the deceleration period. Then, the 
drag coefficient gradually decreases to zero. 

3. For the Models A and B, the flow separates at 
the sharp edges right from the start and remains there 
throughout the rest of the motion. Two, highly stable, 
symmetrical, primary vortices form and continue to grow 
during the periods of initial acceleration and subsequent 
steady fluid motion. The regions of secondary flow near 
the rear edges of the camber are quite small. During the 
period of deceleration, the vortices move towards the 
camber, develop three-dimensional instabilities, and give 
rise to oppositely-signed circulation at the edges of the 
camber. Subsequently, the vortices continue to move 
sideways and the force acting on the camber reduces to 
zero as the vortices are diffused by both molecular and 
turbulent diffusion. 

4. For the Model C (240 degree camber), the initial 
rise in the drag coefficient is followed by a sharp 
decrease and then by a rise to a larger maximum. 
Subsequently, the drag coefficient decreases rapidly at 
the onset of deceleration, goes through zero near the 
middle of the deceleration period, and through a 
relatively small (negative) minimum value at the end of 
the deceleration period. 

5. For the Model C, the flow does not separate 
immediately at the sharp edges of the camber. The 
separation begins at the bottom stagnation point and 
leads to the formation and growth of two small vortices. 
Subsequently, these vortices move towards the rear of the 
camber (the time at which the drag coefficient decreases 



sharply) and the separation points move rapidly to the 
edges of the camber. Then two large primary vortices 
develop and quickly swallow the two small ones. As in 
the case of the Models A and B, the vortices become three 
dimensional during the period of flow deceleration. 

6. For all models, the occurrence of a negative 
drag force during the second half of the deceleration 
period is thought to be one of the major reasons for the 
inception of the parachute collapse. 

7. The discrete vortex model developed in the 
present investigation can be used to predict the 
characteristics of time-dependent flows about cambered 
plates with relatively small included angles (e.g., 120 
deg.). The predictions of the model and the drag 
coefficient in particular, become poorer, particularly in 
the later stages of a decelerating flow, as the camber 
angle increases. This is attributed to three primary 
reasons: occurrence of rear-face separation, development 
of three-dimensional instabilities in the vortices, and 
the effects of molecular and turbulent diffusion. 

8. The evolution of the wake is remarkably similar 
(including the formation of the secondary vortices at the 
sharp edges) to that obtained in flow visualization 
experiments. 

9. The drag coefficient calculated through the 
integration of the instantaneous pressure distribution 
agrees more closely with that obtained experimentally. 

10. The development of negative differential 
pressures near the central region of the camber is 
thought to be primarily responsible for the inception of 
the partial collapse of a parachute at high rates of 
deceleration. This phenomenon takes place even when the 
total drag force acting on the parachute is still 
positive. Extensive analysis and small scale experiments 
coupled with few judiciously selected field tests may 
help to arrive at practically and phenomenologically 
sound parachute designs. 
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DECELERATING FLOW ABOUT CAMBERED PLATES 

1    INTRODUCTION TO EXPERIMENTS 

The determination of the deployment sequence of an 

axisymmetric porous parachute and the unsteady 

aerodynamic loads acting on it presents a very complex 

coupled problem. The development of an analytical or 

numerical model which takes into account the effects of 

porosity, gaps, and variable opening schemes would allow 

numerical experiments on a large class of parachutes, 

reduce the number of the expensive field tests to a few 

judiciously selected ones, and enable the designer to 

calculate the time history of the fall of the parachute 

and the strength required to survive the aerodynamic 

loads. However, the development of such a model is 

hampered by a number of difficulties, the most important 

one being the lack of controlled laboratory experiments. 

It is in light of the foregoing that one acquires a 

greater appreciation of the difficulties associated with 

the solution of the aforementioned coupled problem and of 

the ingenious approximations introduced into the ear.1.y 

models during the past two decades. 

The previous models for parachute loads are based by 

and large on empirical assumptions (see e.g., McVey 1972; 
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Heinrich and Saari 1978; Cockreli 1987). They rely on 

the observation that families of parachutes open in a 

characteristics length and seem to have aerodynamic 

properties that relate well to the projected area of the 

parachute. The apparent mass is assumed to be a function 

of the projected area only and is not a function of the 

prevailing flow characteristics. The vortex sheet 

analysis was used by Klimas (1977) to derive the 

acceleration-independent apparent mass coefficient for 

arbitrary-shaped axisymmetric surfaces. Muramoto and 

Garrard (1984) used a continuous-source model to predict 

the steady-state drag of ribbon parachutes. These 

analyses did not, however, deal with the evolution of the 

unsteady wake and its interaction with the canopy. 

It is in view of the foregoing that an experimental 

study of the separated time-dependent flow about two- 

dimensional rigid cambered plates was undertaken. 

Clearly, the flow about a rigid cambered plate is 

considerably simpler than that about a porous, 

axisymmetric, and flexible parachute and the experimental 

data, regardless of the degree of their agreement with 

corresponding analyses, may not have direct relevance to 

the practical problem under consideration. But the 

object of this investigation was the understanding of the 

evolution of the wake under controlled laboratory 

conditions rather than to provide a design tool.  It is 
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hoped that an investigation of this type will reveal the 

underlying physics of the phenomenon (particularly that 

of the parachute collapse) , help to interpret the full- 

scale results and will provide inspiration for the 

development of suitable numerical models with which the 

dynamics of axisymmetric, porous, and flexible parachute 

canopies can be investigated. 

2    EXPERIMENTAL EQUIPMENT AND PROCEDURES 

2.1 Vertical Water Tunnel 

The experiments were conducted in a 17 ft (5.2 m) 

high, 2 ft by . ft (0.61 m x 0.61 m) cross-section 

vertical water tunnel (see Fig. 1) . A quick-release 

valve located at the base of the tunnel is used to create 

an impulsively-started flow of desired velocity history. 

A partial drawing of the mushroom-like seating surface of 

the quick release valve is shown in Fig. 2. 

In order to prevent distortion of the force 

measurements, the water side profile of the mushroom 

valve has been especially designed to ensure continuous 

undisturbed flow past the seat while the valve is in open 

position. As shown in Fig. 2, when the valve is closed, 

it is in the fully open position. It seats against an 

'0' ring inserted on the bottom of the seating surface so 

that no leakage is present prior to initiating fluid 

motion. 
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(1) Two-Way Air Supply Valve 
(3) and (4) Force Gages; (5) 

: (2) Quick-Release Valve 
Light and Shadow Box 

Fig. 1 Vertical Water Tunnel 
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The vertical position of the mushroom valve is 

controlled by a three-way valve mounted beneath the 

tunnel (Fig. 3) . The stem extends downward from the 

mushroom valve and is directly coupled to the control 

valve piston assembly. Compressed air is provided to the 

two air chambers in the upper part of the valve. Two 

computer-controlled two-way valves in the air supply line 

control the motion of the mushroom-shaped valve and, 

therefore, the flow itself. 

Upon opening the air supply valves, the differential 

pressure between the two air chambers in the upper part 

of the control valve initiates motion of the piston, 

rapidly opening the mushroom valve. Thus, the flow is 

initiated and the fluid drains out into a reservoir 

beneath the tunnel. Subsequent valve motion is regulated 

by the vertical motion of the piston in the lower part of 

the control valve, the viscosity of oil in the liquid 

chamber, and the differential pressure between the two 

chambers. The area, of the opening (and consequently the 

amount of resistance which the piston encounters) between 

the liquid chamk-sr and the upper air chamber can be 

varied by opening or closing the dual ports in the piston 

(Fig. 4). Oil viscosity and supply air pressure can also 

be adjusted. 

These adjustments allow constant velocities at 

desired rates (maximum 2 ft/s) to be obtained.  Following 

17 
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the rapid initial opening, which accelerates the flow in 

about 0.1 seconds, the mushroom-shaped valve may be 

either closed at a desired rate through the use of the 

computer-controlled air valves, so as to achieve a 

desired rate of flow deceleration, or maintained steady 

so as to achieve a continuous steady flow. 

2.2  Test Bodies 

Three circular arcs of radius 1.5 in. (3.80 cm), 

length 24.5 in. (62.2 cm), and included angles of 120 

deg. (Model A), 180 deg. (Model B) , and 240 deg. (Model 

C) were used in the experiments (see Fig. 5) . The edges 

of the cambered plates were first cut razor sharp and 

then gently rounded with sand paper. 

Each end of a model was terminated with a 0.25 in. 

(6.4 mm) long, 3 in. (7.62 cm) diameter circular section 

(part of the original pipe from which the model was cut 

out) . These end sections served several purposes. 

First, they prevented the distortion of the cambered 

plates during their manufacture. Second, they provided a 

clear view of the flow for visualization and photography 

when imbedded rigidly in a plexiglass window (however, 

and unavoidably, this circle shows in the pictures). 

Third, they enabled the measurement of the drag force 

when fitted with circular metal discs (aluminum mounts). 

In this case, the end sections were placed in special 
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I Model A 

120 degree arc 

Radius = 1.5 in, 

Model B 
"ISO degree arc 
Radius = 1.5 in. 

Model C 
240 degree arc 
Radius = 1.5 in. 

Fig. 5 Cambered Plate Models 
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housings cut out of the plexiglass window. The length 

and the diameter of the housing were such that there was 

a gap of approximately 0.04 in. (1 mm) between the 

housing and the end section. Each metal disc was 

attached to a circular rod which, in turn, was attached 

to the self-aligning bearing of the force transducer (see 

Fig. 6) . The flow side of the metal discs were flush 

with the tunnel walls, i.e., there was no obstruction to 

the flow before it reached the cambered test plate. 

These will be described in more detail later. 

2.3  Velocity, Acceleration, and Force Measurements 

Velocity was determined both from the derivative of 

the elevation-time record and from the integration of the 

instantaneous acceleration. A ten foot long platinum 

wire, placed vertically in the tunnel and mounted away 

from the walls, provides water level indication to a data 

acguisition system (amplifiers, analog/digital data 

converter, computer, and recorder assembly). Prior to 

conducting any experiments, impulsive flow was initiated 

several times to check the operation of the system. 

Adjustments to the quick release valve control system 

were made, as necessary, to ensure the repeatability of 

the desired variation in velocity. 

Acceleration  of  the  falling  liquid  column  was 

measured by means of a differential pressure transducer. 
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Two pressure taps, placed on the tunnel wall two feet 

(0.61 m) apart and vertically above each other, were 

connected to the pressure transducer. The acceleration 

was then directly calculated from dU/dt =  p/(2 ) where 

p is the differential pressure and is the density of 

water. The hydrostatic part of the differential pressure 

was nulled out during the balancing of the carrier 

amplifiers. The instantaneous velocity was then 

calculated through the numerical integration of the 

instantaneous acceleration. The velocities obtained from 

the two methods noted above agreed with each other within 

3 percent. 

Two shear-force gages of 10 kg capacity (with an 

over-load capacity of 100 percent) were used to measure 

the instantaneous drag force acting on the test bodies 

(see Fig. 6). Special housings were built for each gage 

so that they could be mounted on the tunnel wall at each 

end of the test body. The bellows protecting the strain 

gages were filled with Dow Corning RTV coating for water 

proofing and then the ends of the bellows were sealed air 

tight. These gages as well as the platinum wire and the 

differential pressure transducer were recalibrated at the 

start and at the end of each test day. No change was 

ever encountered during the entire series of tests. 

One end of each test body was mounted in a self- 

aligning bearing (see Fig. 6) whose housing was connected 
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to the force transducer. This allowed the test body to 

be freely mounted and accurately aligned. The other end 

of the test body was connected to the other force gage 

with a male-female coupling and a pin which allowed 

rotation only in the vertical plane. The angular 

position of the coupling was adjusted so as to make the 

sharp edges of the model align in a horizontal plane in 

both the x- and y-directionr. 

Prior to and at the end of each test day, 

calibration of the force gages was conducted in both air 

and water. Known loads of up .o 10 kg were placed at the 

mid-length of each body. Note that the shear-force gages 

do not reguire that the load be placed exactly in the 

middle of the body. The amplifier-recorder attenuation 

settings were adjusted and compared for each different 

load to ensure linearity, consistency, and repeatability. 

Following the completion of the load calibrations in air, 

the tunnel was filled with water to its full operational 

height and the calibrations were repeated in order to 

make sure that the slight expansion of the tunnel and the 

hydrostatic loading of the force gages did not affect the 

calibration. A simple remote control arm was used to 

place or remove the loads from the model. The net weight 

as well as the buoyant force acting on each load were 

known prior to the calibrations. As will be noted later, 

the same remote arm was used to pour dye in the model for 

purposes of flow visualization. 
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Figures 7 through 9 show sample traces of elevation, 

acceleration and force for the Models A, B, and C, 

respectively. The polarity of the force traces in Figs. 

8 and 9 has been reversed relative to that of Fig. 7. 

The small oscillations in the elevation, acceleration and 

force traces are due to the fact that the data have not 

been filtered. 

Following the initial rise in acceleration due to 

the impulsive start of the motion, the fluid reaches a 

constant velocity and then decelerates rapidly. The 

duration of the period of constant velocity and the shape 

and magnitude of the deceleration are dictated by the 

initial setting of the control valves. 

A typical test run lasted about 2 seconds. Each 

model was tested approximately hundred times for various 

durations of the initial steady flow and magnitudes and 

shapes of the subsequent deceleration. At least three 

runs were conducted at each velocity and deceleration 

setting. Thus, three hundred elevation, acceleration, 

and force traces, similar to those shown in Figs. 7 

through 9, were obtained for each model. 

2.4  Flow Visualization 

The fluid motion was visualized with dye and beads 

and recorded on video tapes. A plane of light across the 

camber was provided through slits approximately one foot 

26 

-VWLS'.V vt-ooo . •. .       .».•^v'j(\k^,>^AAAV.^v.v.'^.:^v;<»v,yvvv<^^ . 



• M     m - m - -M  "_■ -^^ ^ ' t^i 

2 5 
M 

U 
U 
c 

TIME (50 mm = 1 s) 

Fig. 7   Sample Elevation, Acceleration, 
and Force Traces for Model A 
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long, cut into the front and rear walls of the tunnel. 

Shadow boxes were attached externally to the tunnel (see 

Fig. 1) into which were mounted high intensity lights. 

In one series of tests, fluorescent dye was used for 

flow visualization. A small amount of salt was added to 

the dye to make it slightly heavier than water. After 

insuring that the water in the tunnel was calm, the dye 

mixture was poured slowly into the camber through the use 

of the remote control arm. The mixture stayed in the 

camber prior to the commencement of the experiment. 

In another series of experiments, neutrally-buoyant, 

fluorescent, polystyrene beads were dropped into the 

filled tunnel from directly over the plane of light. 

After allowing the beads to slowly sink down to the level 

of the camber, while continuing to add more, the guick 

release valve was tripped to initiate the flow for the 

already running video system. Also recorded on the video 

tape was the time in seconds and 1/100 seconds. The 

timer was started few seconds prior to the inception of 

the flow. However, both the time differences between 

successive frames and the actual time from the inception 

of the motion can be determined easily from the pictures. 

Figure 10 shows the evolution of flow about the 

Model A for a particular acceleration-deceleration 

history. Figures 11 and 12 show similar examples of the 

flow development for the Models B and C, respectively. 
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Fig. 10  Evolution of Flow about the Model A 

31 



Fig. 10  Evolution of Flow about the Model A (Continued) 
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Fig.   10     Evolution of   Flow about   the Model A   (Continued) 
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Fig. 10  Evolution of Flow about the Model A (Continued) 
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Fig. 11  Evolution of Flow about the Model B 
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Fig. 11  Evolution of Flow about the Model B (Continued) 
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Fig. 11  Evolution of Flow about the Model B (Continued) 
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Fig 11     Evolution  of  Flow about  the Modlel  B   (continued) 
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Fig. 12  Evolution of Flow about the Model C 
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Fig.   12     Evolution  of  Flow about  the Model  C   (Continued) 
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Fig.   12     Evolution of  Flow about   the Model  C   (Continued) 
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Fig. 12  Evolution of Flow about the Model C (continued) 
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The time shown in the lower right-hand corner of each 

frame is in seconds and 1/100 seconds. Time zero does 

not correspond to the inception of flow. In Figs. 10 

through 12, the flow is started at times 4.40 (the first 

frame), 2.41 (the third frame), and 1.81 (second frame), 

respectively. 

3   DISCUSSION OF EXPERIMENTAL RESULTS 

The results will be discussed first in terms of the 

representative force data and then in terms of the 

evolution of the wake. 

The drag coefficient is defined as 

Cd = 2F/(pLWU(2) 

where L and W represent, respectively, the length (2 ft 

or 0.61 m in this investigation) and the projected width 

of a model. U0 is the steady flow velocity prior to the 

onset of deceleration. Note that for the models A and B, 

the projected width is egual to the distance between the 

sharp edges of the model, i.e., W = 2.6 in. for the Model 

A and W = 3.0 in for the Model B. However, for the Model 

C, the projected width is still 3.0 in., i.e., the 

diameter of the generating circle. The drag coefficient 

is plotted as a function of the dimensionless time T* = 
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U0t/c where t is the time and c is the radius of the 

camber, (c = 1.5 in. in the experiments). 

3.1 Model A 

Figure 13 shows a comparison of the drag 

coefficients for the Model A for various periods of the 

initial steady flow, prior to the onset of deceleration. 

These data are reduced from force-time records similar to 

those shown in Fig. 7. Several important facts may be 

deduced from a perusal of Figs. 7, 10 and 13. 

The drag coefficients prior to the onset of 

deceleration are nearly identical. The drag coefficients 

after the onset of deceleration are simply shifted in 

time by an amount egual to the difference between the 

durations of their steady-states. In other words, the 

force acting on Model A is not materially affected by the 

duration of the ambient steady flow within the range of 

the parameters encountered in the present study (the 

Reynolds number defined as Re = U0W/i/ ranged from 

approximately 20,000 to 50,000). 

Considering a particular run in Fig. 13, one 

observes that the drag coefficient rises rapidly to a 

value of about 4.5 (due to the rapid accumulation of 

vorticity in the growing vortices) and then begins to 

decrease as the vortices develop under the influence of a 

constant ambient velocity.  Subseguently, C^ approaches a 
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constant value of about 2 (for runs with longer periods 

of steady ambient flow) prior to the onset of 

deceleration. For a flat plate normal to a steady flow, 

the drag coefficient is nearly equal to 2 and is 

independent of the Reynolds number. However, the 

similarity of the two drag coefficients cannot be taken 

too seriously. There are fundamental kinematical and 

dynamical differences in the wakes of the two flows. 

The drag coefficient decreases rapidly at the onset 

of deceleration, goes through zero near the middle of the 

deceleration period, and through its minimum (negative) 

value at the end of the deceleration period (see Fig. 7). 

Subsequently, C^ gradually decreases to zero. The 

occurrence of a negative drag during the second half of 

the deceleration period is of fundamental importance and 

may be regarded as the cause of the inception of the 

collav-se of a parachute. A deeper understanding of the 

relationship between these two phenomena, however, 

requires further detailed investigation. 

Figure 10 shows a sample sequence of the pictures 

depicting the growth and motion of vortices behind the 

Model A (no attempt has been made to select the frames at 

equal time intervals). In these pictures, the 'circle' 

is the 1/4 in. long end piece, imbedded in the plexiglass 

window, as noted in Section 2.2. 
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It is clear from the first few frames that the flow 

separates immediately at the sharp edges of the camber 

and gives rise to two symmetrical vortices. The regions 

of secondary separation near the rear edges of the camber 

(see e.g., the 12th frame) are guite small. The vortices 

continue to grow until the onset of deceleration (at 

about the 15th frame) . Subseguently, the vortices move 

upward and sideways (see e.g., the 24th frame). It is 

important to note that the separation points remain at 

the edges of the camber throughout the deceleration 

period. 

One additional observation is worth noting. The 

video pictures of the vortices along their span have 

shown that the vortices cease to remain rectilinear, 

particularly during the period of flow deceleration, and 

acquire highly complex but continuous spiralling forms. 

This is in spite of the fact that the model and the 

starting flow were both made as two-dimensional as one 

can possibly make them. Thus, the relatively small drag 

force measured during the deceleration period is an 

integrated average of the effects of this three- 

dimensional instability on the pressure distribution. 

It has been known for quite sometime that the three- 

dimensional vortex dynamics plays an important role in 

fluid mechanics. Even if the vortices are shed from the 

body  in  a  two-dimensional  manner,  three-dimensional 
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vortex instabilities distort the filament and the 

spanwise coherence of the pressure distribution, 

particularly when the flow is subjected to deceleration 

or when the vortex filaments are forced to return to 

their creator. The distortion of the vortex filament 

changes the core structure and gives rise to a self- 

induction velocity. The consequences of these changes 

are not yet calculable. However, it is rather fortunate 

that during the acceleration period the vortices grow 

rapidly and move away from the body and this seems either 

to prevent or delay the onset of the three-dimensional 

instability. 

3.2  Model B 

Figure 14 shows a representative plot of the 

variation of the drag coefficient with T*. This figure 

is obtained from force-time records similar to those 

shown in Fig. 8. The comparison of the drag coefficients 

for the Model B, for various periods of the initial 

steady flow, also have shown that the drag coefficients 

prior to the onset of deceleration are nearly identical 

(the additional data are not shown in Fig. 14 for sake of 

clarity) . As in the case of the Model A, the drag 

coefficients after the onset of deceleration are simply 

shifted in time by an amount equal to the difference 

between the durations of their steady-states.  In other 
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words, the force acting on Model B is not materially 

affected by the duration of the ambient steady flow 

within the range of the parameters encountered in the 

present investigation. 

As in the case of the Model A, the drag coefficient 

decreases rapidly at the onset of deceleration, goes 

through zero near the middle of the deceleration period, 

and through its minimum (negative) value at the end of 

the deceleration period (see Fig. 8) . Subseguently, C^ 

gradually decreases to zero. 

Figure 11 shows a sample sequence of the pictures 

depicting the growth and motion of vortices behind the 

Model B (no attempt has been made to select the frames at 

equal time intervals). In these pictures, the 'circle' 

is again the 1/4 in. long end piece, imbedded in the 

plexiglass window, as noted in Section 2.2. 

It is clear from the first few frames that the flow 

separates immediately at the sharp edges of the camber 

and gives rise to two symmetrical vortices. The regions 

of secondary separation near the rear edges of the camber 

(see e.g., the 9th frame) are somewhat larger than those 

of the Model A. The vortices continue to grow until the 

onset of deceleration (at about the 16th frame) . 

Subsequently, the vortices move upward and sideways (see 

e.g., the 20th frame) while the separation points remain 

at the edges of the camber. 
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The video pictures of the vortices along their span 

have also shown that the vortices cease to remain 

rectilinear, as in the case of the Model A, particularly 

during the period of flow deceleration, and acquire 

highly complex but continuous spiralling forms. Thus, 

the relatively small drag force measured during the 

deceleration period is, in fact, an integrated, spanwise 

averaged, three-dimensional pressure distribution. 

3.3  Model C 

Figure 15 shows a representative plot of the 

variation of the drag coefficient with T*. This figure 

is obtained from force-time records similar to those 

shown in Fig. 9. The comparison of the drag coefficients 

for the Model C, for various periods of the initial 

steady flow, also have shown that the drag coefficients 

prior to the onset of deceleration are nearly identical. 

Furthermore, the drag coefficients after the onset of 

deceleration are simply shifted in time by an amount 

equal to the difference between the durations of their 

steady-states. In other words, the force acting on Model 

C is not materially affected by the duration of the 

ambient steady flow within the range of the parameters 

encountered in the present investigation. 

Unlike the previous cases, however, the initial rise 

in the drag coefficient is followed first by a sharp 
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decrease and then by a rise to a larger maximum. 

Subsequently, the drag coefficient decreases rapidly at 

the onset of deceleration, goes through zero near the 

middle of the deceleration period, and through a 

relatively small minimum (negative) value at the end of 

the deceleration period (see Fig. 9). Subsequently, C^ 

gradually decreases to zero. 

Figure 12 shows a sample sequence of the pictures 

depicting the growth and motion of vortices behind the 

Model C. It is clear from the first few frames that the 

flow does not separate immediately at the sharp edges of 

the camber as in the previous two cases. The separation 

begins at the bottom stagnation point (see the 4th and 

5th frames) and leads to the formation and growth of two 

small vortices (see the frames 7-12). The initial rise 

of the drag is partly due to the acceleration of the flow 

and partly due to the formation of these two small 

vortices. Subsequently, these vortices move towards the 

rear of the camber (the time at which the drag decreases 

sharply) and the separation points iLove rapidly to the 

edges of the camber (see frames 13 and 14) . There is a 

time period during which there are four vortices in the 

wake (the two small vortices and the two larger vortices, 

resulting from the separation at the sharp edges), (see 

Frames 12-16). Subsequently, the small scale vortices 

are overtaken by or merge with the larger ones (see 
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frames 20-21). This merging takes place in a very short 

time (in about 0.03 seconds). The remaining vortices grow 

rapidly and give rise to two relatively large regions of 

secondary separation near the rear edges of the camber 

(see e.g. , the 24th frame) . The vortices continue to 

grow until the onset of deceleration (at about the 25th 

frame). Subseguently, the vortices move upward and 

sideways (see e.g., the 29th frame). It is important to 

note that separation during the period of deceleration 

occurs not only at the sharp edges but also at the 

downstream face of the camber (at about 30 degrees 

downstream from the edges) partly due to the presence of 

the large after body (240 degree arc) and partly due to 

the large velocities induced on it. 

The video pictures of the vortices along their span 

have also shown that the vortices cease to remain 

rectilinear, as in the case of the Models A and B, 

particularly during the period of flow deceleration, and 

acquire highly complex but continuous spiralling forms. 

Thus, the relatively small drag force measured during the 

deceleration period is an integrated, spanwise averaged, 

complex, three-dimensional pressure distribution. 
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DISCRETE VORTEX MODEL OF UNSTEADY FLOW 

ABOUT TWO-DIMENSIONAL CAMBERED PLATES 

4.   INTRODUCTION TO ANALYSIS 

4.1 Separated Flows 

The separated flow about bluff bodies has been 

almost completely unyielding to both analysis and 

numerical simulation for a number of mathematical reasons 

and fundamental fluid dynamic phenomena. Separation 

gives rise tc the formation of free shear layers which 

roll up into vortex rings or counter-rotating vortices. 

They, in turn, interact with each other, with the 

counter-sign vorticity generated at the base of the body, 

and with the motion of often unknown separation points. 

The wake becomes unsteady even for a steady ambient flow 

and the problem of the determination of the 

characteristics of the wake becomes coupled to the 

conditions prevailing upstream of the separation points. 

Evidently, viscosity modifies radically the inviscid 

flow, which, in this case, cannot serve even as a first 

approximation to the actual flow. The boundary layer 

equations are not applicable beyond the separation points 

and are, therefore, of limited use in bluff-body flow 

problems. 

The separated unsteady flow situations involving 

wake return,  as  in the case of a decelerating or 
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oscillating body, are an order of magnitude more complex 

than those where the vortices continuously move away from 

the body. The net effect of the wake return is twofold. 

Firstly, the proximity of the large vortices dramatically 

affects the boundary layer, outer flow, pressure 

distribution, and the generation and survival rate of the 

new vorticity. Secondly, the vortices not only give rise 

to additional separation points and/or additional 

vortices, but also strongly affect the motion of the 

primary vortices. These effects are further compounded 

by the diffusion and decay of vortices and by the three- 

dimensional nature of the flow. 

The existing finite difference and finite element 

methods cannot yet treat the high Reynolds number flows 

with sufficient accuracy for a number of reasons. The 

finite difference schemes reguire a very fine grid, a 

turbulence model, and a very large computer memory. It 

seems that the modelling of the turbulent stresses in the 

wake, particularly in time-dependent flows will be the 

major source of difficulty in all future calculations. 

Whether or not it will ever be practical to apply the 

finite difference and finite element methods to high 

Reynolds number flows is unknown. The inherent 

difficulties are certainly significant enough to warrant 

exploring other solution methods. 
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Certain separated time-dependent flows may be 

simulated through the use of the discrete vortex model 

(DVM). The free shear layers which emanate from the 

sides of the body are represented by an assembly of 

discrete vortices. The strength of the elemental 

vortices are determined through the use of the Kutta 

condition. The use of a suitable convection scheme 

enables one to march in time and to calculate the 

evolution of the wake, the velocity and pressure 

distributions, and the lift and drag forces acting on the 

body. The work described herein deals with the 

application of the DVM to decelerating flow about two- 

dimensional cambered plates. 

4.2  Flow About Parachutes: The Genesis of the Problem 

The determination of the deployment sequence of an 

axisymmetric porous parachute and the unsteady 

aerodynamic loads acting on it presents a very complex 

coupled problem. The development of an analytical or 

numerical model which takes into account the effects of 

porosity, gaps, and variable opening schemes would allow 

numerical experiments on a large class of parachutes, 

reduce the number of the expensive field tests to a few 

judiciously selected ones, and enable the designer to 

calculate the time history of the fall of the parachute 

and the strength required to survive the aerodynamic 
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loads. However, the development of such a model is 

hampered by a number of difficulties. In fact, it has 

become evident that finite-difference or finite-element 

solutions of complex, unsteady, separated, three- 

dimensional flows at high Reynolds numbers will not be 

possible before few decades, even for rigid bodies. In 

recent years, the vortex methods have been gaining 

momentum because they offer a true alternative to Navier- 

Stokes solutions (with a suitable closure model for 

turbulence). However, the vortex methods (often one 

method per paper) have not yet become a reliable tool 

which could be used to make predictions rather than to 

mimic the observations and measurements through suitable 

assumptions and fine tuning. In fact, the method has 

been both used and abused by many investigators. It is 

in light of the foregoing that one acquires a greater 

appreciation of the difficulties associated with the 

solution of the aforementioned coupled problem and of the 

ingenious approximations introduced into the early models 

during the past two decades. 

The previous models for parachute loads are based by 

and large on empirical assumptions (see e.g., Heinrich 

and Saari 1978; McVey 1972; Cockrell 1987). They rely on 

the observation that families of parachutes open in a 

characteristics length and seem to have aerodynamic 

properties that relate well to the projected area of the 
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parachute. The apparent mass is assumed to be a function 

of the projected area only and is not a function of the 

prevailing flow characteristics. The vortex sheet 

analysis was used by Klimas (1977) to derive the 

acceleration-independent apparent mass coefficient for 

arbitrary-shaped axisymmetric surfaces. Muramoto and 

Garrard (1984) used a continuous-source model to predict 

the steady-state drag of ribbon parachutes. These 

analyses did not, however, deal with the evolution of the 

unsteady wake and its interaction with the canopy. 

It is in view of the foregoing that a fundamental 

study of the separated time-dependent flow about two- 

dimensional rigid cambered plates were undertaken. 

Clearly, the flow about a rigid cambered plate is 

considerably simpler than that about a porous, 

axisymmetric, and flexible parachute and the results, 

regerdless of the degree of their agreement with 

corresponding experiments, may not have direct relevance 

to the practical problem under consideration. But the 

object of this investigation was the understanding of the 

evolution of the wake under controlled conditions rather 

than to provide a design tool. It is hoped that an 

investigation of this type will reveal the underlying 

physics of the phenomenon (particularly that of the 

parachute collapse), help to interpret the full-scale 

results and will provide inspiration for the development 
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of more general vortex models with which the dynamics of 

axisymmetric, porous, and flexible parachute canopies can 

be investigated. Efforts directed towards the 

development of a general numerical model, driven by the 

ever-present pressures of practical considerations, are 

deemed somewhat premature. Such efforts will have to 

face not only the problem itself but also the 

deficiencies of the vortex models and attempt to address 

to both of them simultaneously. The model presented 

herein removes the ambiguities associated with the use of 

the discrete vortex model and provides results which are 

for the cambers of smaller included angle in excellent 

agreement with those obtained experimentally. 
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5    ANALYSIS 

5-1  Transformations and the Complex Velocity Potential 

The calculation of the velocity of any one of t^3 

vortices and the force acting on the body requires a 

conformal transformation (in which the camber becomes a 

circle), a complex-velocity potential representing the 

vortices, their images, and the two-dimensional 

irrotational flow around the body, and the use of the 

generalized Blasius theorem. 

The flow in the circle plane may be transformed to 

that about a cambered plate through the use of two 

successive transformations, one from 5 plane to the  ^', 

plane and the other from the  5° plane to the z plane. 

These are given by (see Fig. 16) 

b- 
2-;° --^ .  and f- s + m (i 

Combining the two, one has a direct transformation 

from the £ plane to the z plane as 

b- 
-;+m-—— (2) 

It is easy to show that the camber in the z plane is a 

circular arc. 

The y-axis in the z plane passes through the tips of 

the camber.  It is advantageous to locate the origin of 
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Fig. 16 Circle and Physical Planes 

the coordinate axes at the geometric center of the 

camber, i.e., at the center of the circle part of which 

represents the camber. This is easily accomplished by 

shifting the origin of the coordinate axes by 

<,- 
:m--i 

m 
(3) 

where z^ is the x coordinate of the origin of the circle 
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in   the  z  plane.     Thus,   one  has 

b: 

Z-(; + m--  + zo   withz'--zo (4 m        0 oo 

which transforms the circle In Fig. 16a to the physical 

plane in Fig. 16d. Table 1 summarizes the relationship 

between m, z,, the included angle of the camber, b, and 

the radius of the camber. 

Table I  Summary of the parametric relationships 

m z,        2 b      R=l/m 

cos60 =0.5 -1  ' 120 0.866 2 

cos45 = 0.707 0 180 0.707 n 
cos30 = 0.866 1//3 240 0.5 2//T 

The complex potential function w in the circle plane 

(see Fig. 16a) which describes a uniform flow U (assumed 

to be time-dependent) with a doublet at the origin to 

simulate the cylinder, r», clockwise-rotating vortices 

(called q-vortlces). Tup counter-clockwise-rotating 

vortices (called p-vortlces), and the Images of all the 

p- and q-vortlces in the circle plane may be written as 
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+ ^0qLn(i; - f) - - ^kq Ln(^" w+1^q Ln(;" r3   (5 

in which Tip and ^kp represent respectively the strength 

and location of the Ic-th p-vortex, r», and ^, the 

strength and location of the k-th q-vortex, and c the 

radius of the cylinder; an overbar indicates a complex 

conjugate. The need for the separate identification of 

the p- and q-vortices and for the singling out of one of 

the vortices in each shear layer (namely, r0 p and To,, 

the nascent vortices) will become apparent later. 

5.2  Complex Velocities of Vortices 

The convection of the vortices and the calculation 

of the forces acting on the body require the evaluation 

of the velocities at the vortex centers. For the 

velocities in the circle plane this reduces to 

subtracting from Eq. (5) the complex potential 

corresponding to the vortex for which the velocity 

components  are  to be determined and  evaluating  the 
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derivative of the remaining terms at C a 5» . To 

determine the velocities In the physical plane, however, 

one has to subtract (irk/2TT)Ln( z - zk ) from Eq. (5) or, 

in terms of £, the terms (see e.g.,   Sarpkaya 1967, 1975) 

^LnlC - |l) + -£k-Ln[l + 1      (6) 

It should be noted that the first term in Eq. (6) is the 

complex function corresponding to the Jc-th vortex in the 

Cplane.  The second term appears merely as a consequence 

of the transformation used. 

The above procedure may be generalized as follows. 

Consider the potential function for a single vortex in 

the physical plane and ignore, for the time being, the 

multiplier in front of the logarithmic term (i.e., 

ir\ /2TT) .  Then one has 

Ln(z - zv) = Ln[ RQ - fig J  with z - fft) I 7) 

Equation (7) may be written as 

Ln (z - zv) - Ln (C - g + Ln      v ( 8 

Evidently, the first term on the right hand side of Eq. 

(8) represents the vortex in the circle plane.  Let us 
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now examine the derivative of the second  term with 

respect to z.  One has. 

dW. 

dT 
p = «o-aa 

v-1 

dz 
(9) 

where dz/d; = f ( C ) •   In the neighborhood of  % the 

function f(;) may be expanded as follows. 

fig - n; 
(C -r )2 

.) - (;-^)fK)+   ? 
v f'^v)+ -       (10 

Thus,   one  has 

dW. 

dz" 
p= I^im 

^v 

1/2 oy 1 
(ID 

or 

dW 
 i 

dz 2f': (ä (12) 

Thus, the complex velocity in the physical plane reduces 

to 
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.u   + iv   - —[\V(0 
*        y     d^ 

iT 
271 

s,) ] f'(c) 

ir f(0 
4JT f'2(;v) 

(13) 

in which for a p-vortex 

b- r(V- •+ «tp+ m,- (14) 

and 

2b- 
r(V"      (Ckp^ S? ( 15 

The last term in Eq. (13) reduces to 

. irkD   (-b
:)(';kc> + m) 

27r [{^p + mr + b2 ]2 
(16) 

This result could have been deduced directly from Eq. 

(6). However, the generalization of the method enables 

one to apply Eq. (13) to any vortex for any 

transformation between the circle and the physical plane. 

67 

>-^"/"AV^.v^v>-/'^-^-^-A:^-"/<.v^^<^K:"'.y^^'^^^<^.y^ V!C's"^^.;^'^y^^N^ X^-CN-C^V: .iv^s.^^ 



5,3  Kutta Condition 

The fact that the flow separates tangentlally with a 

finite velocity at the edges of the plate (Kutta 

condition) may be expressed by requiring 

— » 0   at ;- C--m±ib (17) 

Thus, inserting Eq. (5) in Eq. (17), one has 

rn /   i i   \   irn /   i i 
+iM-^--     '    -^ ^ Vr^    ^r)   * ^S*   ^f 

^Op -Oq 

m if 

Equation (18) may be decomposed into two parts as 

IT«. / 1     1 
+^op/_J__-_l_\-Jljh 

'Op s0q 

+ (-"o + iVo) = 0- 

(18) 

(19) 

where the terms containing the strength of the nascent 

vortices represent the velocity induced at the tip of the 
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camber by the nascent vortices and the term in 

parenthesis the velocity at the tip due to all other 

vortices (and their images), the doublet at the center of 

the circle in the ; plane and the ambient velocity. 

Equation (19) represents two coupled equations for 

the strengths and positions of the nascent vortices. 

Thus, the solution of the said quantities does, in 

general, require an iteration. However, this iteration 

may be avoided by noting that the velocity induced by a 

nascent vortex at the opposite tip is very small and 

certainly negligible. Thus, Eq. (19) for one of the 

nascent vortices may be reduced to 

-ioq/ !_ _  L_ U (-u 4-ivJ = 0 (20) 2:1 K^  7IZ 
^Oq 

A similar expression may be written for the other nascent 

vortex. The use of the Kutta condition, as expressed by 

Eq. (20), will be explained further later following the 

discussion of the tip velocity. It suffices to note that 

all nascent vortices satisfying the Kutta condition do 

not yield either the same tip velocity or the same 

velocity distribution in the neighborhood of the tip. 

There are, in fact, certain preferred positions for the 

nascent  vortices  which  yield  physically  realistic 

69 

.-. --. v_ ww. s. *..-.w. s. /_-■.     .•..-. v..«.-.-.v. .". w.v.•. wv <rjs. J".v.w. .-. <v ,\«\ ."..•, .•..-. Al WVLW. '. -"..". .-. .*. .\ .W.'.'.V-'.V.VA.'.'.V. 



velocity distributions near the tips of the cambered 

plate. These nascent vortex positions will be discussed 

later. 

5.4  Tip Velocity 

According to the Kutta condition the tangential 

velocity at the tip is finite. The purpose of the 

following is to determine this finite velocity. It may 

be determined either through the use of 1'Hopital's rule 

or through the use of a more general expression which is 

valid for all other transformations. 

The velocity at the tip is given by 

dW dW dC 
— = —    at z * 2 ± 2ib 
dz  d; dz      '  0 

For an arbitrary point z,   Eq. (4) yields, 

dC        1 V^b" 

(21 

dz        2       2v'z - zt 

In general,   one may write  Eq.   (22)   as 

d^        1    , (z - zj 

dz        2    ' 2v'(z - zor + ^b- 

or multiplying both  sides with -/(z-Zt ),   one has. 

122) 

(23) 
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Rz) =  (z-z)l/2lL 
1       dz 

1 ,« (z - zn) 
— (z -zf)

I/2 ± 

(24) 

2V        l' 2Vz-(z±2ib) 

Thus,   for  z,   =  z,   +  Zib,   one has 

f(zt) = (z -z,)1'2 — -—Vib (25) 

or 

dC VIb 2f2{zf) 
(26) dz    2Vü^z;)   ; - ct 

Expanding dw/d C In the neighborhood of S, , one has 

dW        // 
^- = (; " Ct) W (Q + .... (27) 

Combining Eqs.   (26)   and   (27)   one   finally has, 

dWi        d:\V    , 
—  =2-T-f2(zt) (28) 
dz I        d^- 

z = zt 

Noting that for the case under consideration fl(Zt) = 

ib/4, one has. 
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dW d*W    ib 

d^-       2 dz 
z = z. 

(29) 

Equation (29) yields the desired finite tip velocities. 

It Is easy to show that It may be obtained directly from 

Eq. (21) through the use of I'Hopltal's rule. 

5.5  Time-Dependent Forces 

The force acting on the body In the physical plane 

may be calculated either through the use of the pressure 

distribution or through the use of the rate of change of 

Impulse. 

Bernoulli's equation for unsteady flow Is given by 

P.    V.2     P,   V*   2 5V (30) 
-J- + -J-) - ( —2- + —2- - J — ds = f (t) 
P    2     P    2       S  dt 

where the Indices Indicate two points on the body In the 

physical plane. Since there Is no pressure drop across 

the shear layer and since the Integral term In Eq. (30) 

Is zero at the tip (I.e., ds = 0), one has 

V 2  V 2 

f(t)-^ i2_ (31) 
2    2 
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where V, t and V, i represent the tangential velocities on 

the upstream and downstream faces of the tip. It is 

important to note that f(t) in Eq. (31) is also the time 

rate of change of circulation, i.e., the rate at which 

vorticity is shed into the wake from the tip of the 

cambered plate. 

The normalized form of Bernoulli's equation between 

any two points then becomes 

p_P    V2_v2   V 
2 - V 2  5 " V 

The integration of the differential pressure between the 

upstream and downstream faces of the camber yields the 

force components in the x and y directions, i.e., the 

drag and lift forces. 

The force acting on the body can also be calculated 

through the rate of change of impulse.  It is given by 

F-A.pc'üo-^ + ^r.^-^)! i" 

which may be written as 

F cÜ        c m: 

0, + i C - —-T. = 27i(—^) (—) (1 - —7) 
2pL 'b L -     b 2c* (34 

O O 

-." v" V V v •»- 

cd      r    c.        c 
+ ^:^7—r^1^—)"f(-r)]} 

2b d{Lot;c}   Loc        c ^ 
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in which U0 is the reference velocity; U, the rate of 

deceleration of flow and z = fl?*), i.e., the 

transformation given by Eq. (4). Equation (34) may also 

be deduced directly from the generalized Blasius 

equation. It is important to note that the force 

calculated from Eq. (34) includes the effect of the rate 

of change of circulation between two successive time 

steps. Thus, it may be smaller or larger (depending on 

the sign of F) than the force calculated through the 

integration of the instantaneous differential pressure 

[Eq. (32)]. This is because of the fact that the 

instantaneous pressure depends only on the prevailing 

flow conditions and does not account for the rate of 

change of total circulation between successive time 

steps. In the calculations to follow Uo and c are taken 

as unity for sake of simplicity. 

5.6  Method of Calculation 

The use of the discrete vortex model (DVM) requires 

certain decisions to be made regarding the  flux of 

vorticlty;  introduction of the nascent vortices;  the 

convection, cancellation and combination of all other 

vortices;  and the time  interval  to be used in the 

creation and convection of the vortices. Even though 

some subjective decisions are required in the selection 
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of the proper values and procedures (which makes one 

application of DVM differ from another), it is important 

that the basic and experimentally observed facts are not 

contradicted, the numerical procedure used to implement 

the method is stable, and that the results do not 

critically depend on the magnitude of disposable 

parameters introduced. 

The methods used in the past in the determination of 

the rate of vorticity may be roughly classified into two 

broad categories. The first of these involves the use of 

variable nascent vortex positions (see e.g., SarpJcaya 

1968, 1975) and the second the use of fixed nascent 

vortex positions (see e.g., Clements 1973-1975). 

The method of fixed positions involves the selection 

of a suitable fixed point in the flow near the separation 

point and the use of the velocity U, at that point to 

calculate the rate at which vorticity is shed into the 

wake from 

cr    i    , 
r = Tu«' |35) 

In this method the positions of the nascent vortices are 

the crucial parameters. The previous applications of 

this method did not examine the effect of the position of 

the nascent vortices on the velocity distribution in the 

■ 



neighborhood of the separation point. Only the distance 

of the fixed point to the body was varied and bracketed 

between two subjective limits by comparing the calculated 

results with those obtained experimentally. In this 

method no interaction is allowed between the shed 

vortices and the amplitude of oscillation of the point or 

the time of appearance of the nascent vortices. 

Furthermore, the time interval is chosen more or less 

arbitrarily (Kiya and Arie 1977) (repeating a few 

calculations with a single program with only the time 

step changed and also by referring to the results of the 

previous investigations). Thus, the velocities at the 

outer edges of the shear layers are only indirectly 

related to the strength of the nascent vortices and the 

fixed time interval. Evidently, the velocities in the 

inner and outer edges of the shear layers, the time 

interval, the strength and position of the nascent 

vortices, and the Kutta condition are interdependent and 

that both the position of the nascent vortices and the 

time interval cannot be chosen arbitrarily, even if they 

are chosen judiciously on the basis of previous 

experience and trial calculations. 

Sarpkaya (1975) used the method of variable nascent 

vortex positions and determined the rate of shedding of 

vorticity from the relation 
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where U, h is interpreted as the velocity in the shear 

layers calculated by using the average of the transport 

velocities of the first four vortices in each shear 

layer. The positions of the nascent vortices are chosen 

so as to satisfy the Kutta condition at the edges of the 

body and thus they can move slightly with time. Thus, 

this method simulates in a satisfactory manner the 

mechanism of feedback from wake fluctuations to the 

fluctuations in the rate of circulation. The number of 

disposable parameters is reduced to a minimum and in this 

sense this method is superior to the method of fixed 

positions. However, the use of the average of the 

transport velocities of the first four vortices remained 

questionable. 

It was often assumed that the vorticity flux could 

not be calculated, at each time interval, as it is 

applied to sharp-edged bodies, through the use of the 

mathematically finite velocity occurring at the sharp 

edges of the body. This assumption was based on the fact 

that the separation points are singularities of the 

transformation used and the numerical procedures may not 

be stable. 
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It is on the basis of the foregoing that an original 

study was undertaken to establish once and for all a 

method whereby the nascent vortices may be introduced 

into the flow without any ambiguities. The method 

finally arrived at will be explained through the use of a 

series of figures and velocity plots. 

Figures 17a and 17b show the tip region in the circle 

and physical planes, respectively. The regions A and 3 

in Fig. 17a were discretized through the use of a suitable 

grid and a single vortex was placed at a grid point. The 

strength of the vortex was determined from the Kutta 

condition [Eq. (20)]. Then the velocity normal to the 

radial line OM in the physical plane (F1q. 17b) was 

calculated in the vicinity of the tip through the use of 

the complex velocity potential. 

oZ 

b. 

Fig. 17 Tip Region in the Circle and Physical Planes 
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Placing the vortex along the radia'. line OM (in the 

C plane) yields a single valued tip velocity independent 

of the strength and the position of the vortex and 

dependent on the plate geometry, i.e., b and 0. . It is 

easy to show that the velocity at the edge of the pla' e 

reduces to q = ±ub/2) e"3'9s (-l-e":i9s;. For the case of a 

120-degree camber this gives an absolute value of 0.433 

with a velocity direction opposite to that expected at 

the edge of the plate (Fig. 18). 

Placing the nascent vortex to the right of the 

radial line OM in the circle plane (or along the circular 

arc in the physical plane) always requires a stronger 

vortex to satisfy the Kutta condition and thus results in 

a tip velocity which is unrealistic both in magnitude and 

direction (see Fig. 19). 

Placing the nascent vortex along the radial line 02 

in the physical plane or outside the region A shifts the 

point of maximum velocity away from the edge of the plate 

(towards the downstream side).  This, in turn results in 

a leakage of fluid through the shear layer and requires a 

stronger vortex to satisfy the Kutta condition (see Fig. 

20). 

The entire region A enclosed by the transformation 

of the radial line OZ in the physical plane and the 

radial line CM in the C plane, is examined to determine 
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Fig, 18 Velocity Profile along the Radial Line 
(Nascent Vortex on CM) 
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the most appropriate positions of the nascent vortex. 

Figures 21 through 23 show a three-dimensional plot and 

the contour lines of r, U(max)/U(tip) , and U(tip) as a 

function of the radial positions R and the angular 

positions R9 for those locations of the nascent vortex 

for which r<l, U(max)/U(tip) < 6, and U(tip) < 6. 

Figures 24 through 26 show three representative 

velocity profiles for three different positions of the 

nascent vortex in the region defined above. The most 

striking feature of these figures is that the maximum 

velocity near the tip can exceed considerably (and 

unrealistically) the velocity at the tip and that only 

for certain vortex positions does the maximum velocity 

(the velocity in the inner face of the camber near the 

tip) approach smoothly the finite velocity at the tip. 

This is in conformity with the fact that in inviscid 

flows the velocity and acceleration extrema can occur 

only on the body. Extensive calculations have shown that 

there is, in fact, a finite region in which the nascent 

vortices may be introduced in order to produce a tip 

velocity which is nearly equal to the maximum velocity in 

the vicinity of the tip. Clearly, it is only for unique 

combinations of the radial distance R and the angular 

position Re that the said velocity ratio is equal to 

unity (for additional details see: Mostafa 1987 and Munz 

1987). 
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Figure 21 shows the required vortex strength as a 

function of the radial distance and 9. Even though these 

calculations were carried out with a single vortex, the 

subsequent calculations with large number of vortices 

have shown that the relationship between the maximum 

velocity and the tip velocity remains practically 

invariant if th« nascent vortices are always introduced 

at the fixed point which produces U(max)/U(tip) = 1 for 

the single vortex. The reason for this is that the said 

velocity ratio is primarily dictated by the nascent 

vortex. The foregoing analysis led to the conclusion 

that the nascent vortices should be introduced at r = 

1.0925 and 9 = 6» ± 2.28° , for the case of the 120-degree 

camber. To be more precise, the two nascent vortices are 

placed at the angular positions op = 9. i - 2.28, and 9, = 

9,j + 2.28, during the period for which Vi-Vi > 0.2. For 

V2 > Vi, the positions of the two nascent vortices switch 

to their corresponding images with respect to the radial 

line OM, i.e., they are placed at 9p, = 9.1 + 2.28 and 

6,1 =9,2 - 2.28. Similar calculations have been carried 

out for the 180 deg. and 240 deg. cambers and the 

appropriate positions of the nascent vortices were found 

to be 9 = 90 +2.05 and 9 = 9o ±1.36, respectively 

Evident:'', the nascent vortex position is not materially 

affected by the camber angle. 
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The evolution of the very early stages of the flow 

in the Immediate vicinity of the tips of the camber is 

shown in Fig. 27. 

In Fig. 27a the velocity field is a consequence of 

the first two nascent vortices introduced at the points 

noted above. Figures 27b through 27d show the 

development of the flow field and the starting tip vortex 

subsequent to the introdtction of the 4th, 8th, and 11th 

nascent vortex, respectively. 

The fact emerging from the foregoing analysis is 

that the nascent vortices cannot be placed arbitrarily 

(e.g., along the radial line in the circle plane or along 

the extension of the camber in the physical plane). 

Otherwise, the velocity distribution in the vicinity of 

the tip becomes unrealistic and unrepresentative of the 

evolution of the shear layers on either side of the 

camber. Furthermore, one is then forced to make 

arbitrary assumptions regarding the strength and the 

convection of the nascent vortices. 

5.7  Vorticity Flux 

There is not a unique procedure for relating the 

rate at which vorticity is shed into the wake, the Kutta 

condition, the velocity with which the nascent vortices 

are convected, and the time interval for the convection 
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which help to reproduce the experimentally observed 

features of the free shear layers. Fage and Johansen 

(1928), through quite ingenious experiments with steady 

flow about various bluff bodies, have shown that 

vorticity is shed from the two sides of an axisymmetric 

body (a circular cylinder) or a sharp-edged body (a plate 

normal to the flow) at the same rate; that the motion in 

a sheet is steady near the body, except possibly near the 

inner edge of the shear layers; that fluid flows into a 

sheet through both edges, but at a greater rite through 

the outer edge; that at each section of the sheet the 

velocity rises from a small value to a well-marlced 

maximum value (approximately Vi /U = 1.45) and then very 

slowly decreases to about 1.35 within a distance of 

approximately y = 2c, where the breadth of the sheet 

reaches a value A = c; and finally, that the velocity V, 

at the outer edge of the sheet is much larger than the 

velocity V, at the inner edge (except during the 

deceleration period of the flow) and V2 may be ignored in 

calculating the vorticity flux from iT/it   = 0.5(V^-V22). 

In the present calculation the vortex strength, the 

velocities on either side of the shear layer, and the 

time interval are related by 

T = 0.5 (V? - V?) At (37) 
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in which r is the strength of the nascent vortex, Vi = 

U{tip) and Vj is the velocity at the downstream face of 

the camber near the tip. The velocity V2 oan be 

calculated correctly in a number of ways, to be described 

later. Suffice it to note that in general Vi is very 

small I for steady flow) and that the method of its 

calculation has very little or no inflvdnce on the 

strength of the nascent vertex or on the time interval to 

be used for a given vortex strength. The velocity V2 

becomes important only when the wake begins to move 

towards the camber and when the included camber angle is 

large, i.e., when the regions of secondary separation are 

substantial as in the case of 180 and 240 degree cambers. 

5.8  Computational Details 

To explain the computational details of ehe method 

let us consider a particular time t after the start of 

the motion and assume t to be sufficiently large so that 

there are a number of vortices in the wake. Then the 

appearance and convection of vortices proceeds as 

follows, depending on whether a variable or constant time 

interval is used. 

5.8.1  The variable time-interval method 

(1)    Determine  the  strength  of  the  nascent 
vortices from the Kutta condition [Eq. (20)]; 
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(2) Place the nascent vortices at 5op and ^„q and 
calculate the velocity Vi at the two edges of 
the plate; 

(3) Calculate Vj , representing the velocity at 
the inner boundary of the shear layer, as the 
integral average of the velocities along the 
radial line OZ in the physical plane, i.e., 
from r  =  1  tor  =  1.1; 

(4) Calculate the time interval, for each edge of 
the plate, from Eq. (37) using the known 
values of T and the velocities Vi and Vz . 
Store the average of the two time intervals 
for use   in the  subsequent  calculations; 

(5) Calculate the velocity induced at the centers 
of  all   other vortices; 

(6) Convect the two nascent vortices with a 
velocity 0.5(Vi + V2) for an average time 
Interval At (note that the vorticity is 
convected with the average velocity of the 
shear layer). If the distance travelled by a 
nascent vortex is not within 0.05 + 0.01, it 
is convected twice for a time interval At/2. 
The subsequent convections of the nascent 
vortices are made using the velocity induced 
at   their  center. 

(7) Convect all other vortices for the same time- 
interval At using a second order scheme given 
by 

z(t + At)    =   2|t)   +  0.5[3z|t)    -   2(t-At)]At      (38) 

in  which  z  =  u +  iv. 

(8) Remove the vortices from the calculation 
whenever they come nearer than 0.05 to the 
camber in the physical plane (except the 
first  20  vortices  from the   tip); 

(9) Coalesce vortices with a separation of less 
than 0.05 (in the physical plane, except the 
first  20 vortices); 

(10) Calculate     the     tangential    velocities     and 
pressures on  the  inner and   outer   faces of   the 
camber.       Determine   the   drag  and   lift   forces 
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through the integration of pressure and 
through the use of the rate of change of 
impulse. Make plots of suitable variables 
(e.g., velocity distribution near the tip, 
variation of nascent vortex circulation with 
time, evolution of wake, etc.); 

(11) Check the flow conditions to determine the 
state of the calculations: 

(a) If Vi-Vj > 0.2 repeat the foregoing 
steps; 

(b) Stop the introduction of nascent vortices 
if 0< Vi-Vj<0.2 and return to step No. 5; 

(c) If Vj > Vi switch the angular positions 
of the nascent vortices to their image 
positions. Calculate Vj as the integral 
average of the velocities at the upstream 
side of the tip of the camber and repeat 
the foregoing steps; and 

(12) Make plots of the variations of various flow 
parameters (e.g., tip velocity, nascent 
vortex circulation, evolution of the wake, 
force coefficients, etc.) and terminate the 
run. 

The foregoing steps are quite general and can be 

used for any camber, provided that the optimum points of 

placement of the nascent vortices are incorporated into 

the calculations. 

5.Ö.2 The Constant Time-Interval Method 

In this method the appearance and convection of the 

vortices are based on the use of variable nascent vortex 

positions and a constant time interval. 

(1) Select a vortex position along the radial line 
defined by e = 117.72° and use r = 1.1 as first 
trial; 
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(2) Calculate the strength of the nascent vortex 
which satisfies the Kutta condition. This is 
an exact solution and requires no Iteration. 

(3) Place the nascent vortex at the corresponding 
points in the circle and physical planes and 
calculate the tip velocity. 

(4) Calculate a new nascent vortex strength from 
0.5(V? - V?)At where Vi and V2 are as defined 
before. 

(5) Compare the newly calculated circulation with 
that obtained from the Kutta condition. If the 
difference between the two circulations is less 
than 0.001 proceed to the next step. If the 
said difference is larger than 0.001, carry out 
an iteration on the radial location of the 
nascent vortex as many times as necessary until 
the above condition is satisfied. If the 
circulation calculated from the Kutta condition 
is larger than that calculated from the tip 
velocities, the vortex must be moved towards 
the cylinder and vice versa. Also, each time 
the direction of the motion of the nascent 
vortex is changed (inward or outward), the 
marching distance is halved in order to 
accelerate the convergence of the two 
calculations. 

(6) Calculate the velocity induced at the center of 
all other vortices. 

(7) Convect the two nascent vortices with a 
velocity O.SIV! + V2 ) for a time interval At. 

(8) Convect all other vortices for the same time 
interval using a second order scheme given by 

z{t+At) = z(t) + 0.5[3z(t) - z(t-At)]At    (38) 

in which z = u + iv. 

(9) Remove the vortices from the calculation 
whenever they come nearer than 0.05 to the 
camber in the physical plane (except the first 
20 vortices from the tip). 
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(10) Coalesce the same sign vortices with a 
separation of less than 0.05 (In the physical 
plane, except the first 20 vortices). 

(11) Calculate the tangential velocities and 
pressures on the Inner and outer faces of the 
camber. Determine the drag and lift forces 
through the Integration of pressure and through 
the use of the rate of change of Impulse. Make 
plots, as before, of suitable variables (e.g., 
velocity distribution near the tip, variation 
of nascent vortex circulation with time, 
evolution of the wake, etc.). 

(12) Check the flow conditions to determine the 
state of the calculations as in step No. 11 in 
Section 2.8.1. 

(13) Make plots of all the desired variables and 
terminate the run. 

A particular run required about 150 vortices on each 

side of the camber. Extensive experience with the two 

versions of the code has shown that a run takes about 1.8 

hours on a VAX 2200 and about 3.5 hours on an IBM PC/AT 

with no Turbo-Jet Accelerator. Furthermore, the 

constant-time-interval version of the program ran 

slightly faster than the variable-time-interval version, 

in spite of the iterations required for the nascent 

vortex position. Finally, it is important to note that 

both versions of the code yielded almost exactly 

identical results for a given camber and velocity 

history. 
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6.   RESULTS AND COMPARISON WITH EXPERIMENTS 

6.1  Model A 

The calculations were carried out for two time- 

dependent normalized velocities. The first of these Is 

given by 

U/Uc =1  for  T* < 8.65 (39a) 

U/Uo = 1 - 0.1539(T* -8.65) + 0.00531(T* -8.65)2   (39b) 

for 8.65 < T* < 19 

For this profile (see Fig. 28 ), the flow begins to 

decelerate at T* = 8.65 and the velocity of the ambient 

flow reduces to zero at about T* = 19. 

The second velocity profile is given by 

U/U, = 1  for T* < 9.72 (40a) 

U/U„ = 0.97 T* - 0.05 T*2 - 3.70 (40b) 

for   9.72  <  T*  <   11.48 

U/U0    =   -0.3423   T*   +  0.0072   T*1   +   3.82 (40c) 

for   11.48   <   T*  <   17.95 

For T* larger than 18, the velocity and acceleration are 

zero (see Fig. 29)• 

The velocities and accelerations given above and 

shown in Figs. 28 and 29 correspond to that encountered 
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in two sets of experiments. Evidently, the calculations 

can be carried out for any specified variation of the 

velocity. 

The computer program provided, at times specified, 

the positions of all the vortices, the rate of shedding 

of vorticity from the tips of the camber, the velocity 

distribution on the upstream and downstream faces of the 

camber, the total and differential pressure 

distributions, and the force coefficients. 

Figures 30 through 32 show, at T* = 4.35, the 

evolution of the wake, the tangential velocities at the 

upstream and downstream faces of the camber, the velocity 

profile along the radial line passing through the tip, 

and the total and differential pressure distributions, 

obtained through the use of the first ambient velocity 

history [see Eqs. 139a) and (39b)]. The second ambient 

velocity history gave very similar results. They will 

not be reproduced here for sake of brevity. 

Figures 30 through 32 and others show that the 

characteristics of the flow develop symmetrically prior 

to the onset of deceleration (at T* = 8.65) and the 

differential pressure is positive everywhere (i.e., the 

pressure inside the camber is larger than that outside) . 

Following the onset of deceleration (see e.g.. Figs. 

33 through 35 at T* = 10.84), the differential pressure 
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Fig.   31   Velocity Profile along the Radial Line Passing through the Tip 
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near the axis of the camber becomes Increasingly 

negative. The reason for this is that the deceleration 

of the flow brings the vortices closer to the camber. 

The significance of this result is that had the model 

been flexible (as in the case of a parachute) the central 

part of the camber would have collapsed as a result of 

the particular deceleration it is subjected to. 

Evidently, the collapse phenomenon would not have 

remained symmetrical, as evidenced by field experiments 

with large axisymmetric parachutes. 

For T* larger than about 13 (for the ambient flow 

under consideration), the velocities Induced at the 

downstream edges of the camber by the large vortices 

moving towards the camber give rise to oppositely-signec 

vorticity. This, in turn, leads to the rapid growth of 

the secondary vortices (see eg. Figs. 36 through 38 at 

T* = 17.86). The secondary vortices are relatively 

weaker than the primary vortices partly because they have 

been in existence only for a short time and partly 

because the vorticity flux is not as large as that in the 

primary shear layers. Consequently, the centroid of the 

secondary vortices tends to orbit about the centroid of 

the primary vortices. 

A comparison of Figs. 35 and 38 shows that the 

region of negative differential pressure grows with time 
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and occupies a large central portion of the camber. In 

fact, the drag force acting on the camber becomes 

negative, as it will be seen shortly. 

Figures 39 through 44 show, at suitable times, the 

velocity field about the camber. The rapid growth of the 

wake during the perxjd of steady uniform flow is 

exhibited in Figs. 39 and 40 . Figure 41 nearly 

corresponds to the time at which the deceleration is 

imposed on the flow. Figures 42 through 44 show clearly 

the backward motion of the primary vortices and the rapid 

growth of the secondary vortices. It is seen from Fig. 

44 that the fluid motion is entirely due to the motion of 

the vortices in the flow field. The two vortices on each 

side of the camber form a counter-rotating couple and 

remove themselves rapidly from the field under the 

influence of their mutual induction velocity. 

Subsequently, the absolute value of the differential 

pressure begins to decrease. Eventually, the 

differential pressure reduces to zero everywhere on the 

camber as the condition« approach to that of a body in a 

fluid at rest. 

Figures 45 and 46 show the velocities Vi and Vj as a 

function of T*. The tip velocity V! decreases from an 

initially large value of about 3.5 to a nearly constant 

value  of  about  1.5  just  prior  to  the  onset  of 
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Fig.  44   The Velocity Field about the Camber at T* = 21, 50 
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deceleration. Subsequently, Vi decreases rapidly during 

the period of deceleration and prior to the Inception of 

the secondary separation. Then V! Increases to about 2 

because of the backward motion of the large vortices near 

the tips of the camber. Finally, Vi decreases once again 

as the primary and secondary vortices move sideways and 

away from the tips of the camber due to their mutual 

Induction (see Fig. 44 ). 

The variation of V2 with T* Is significant only 

during two, relatively short, time intervals: at the 

start of the motion and at the start of deceleration. 

These are the periods during which the vortlcity flux 

changes rapidly in order to maintain the Kutta condition. 

During the remainder of time Vj is negligibly small, as 

expected on the basis of the pioneering experiments of 

Fage and Johansen (1928) with steady flow over various 

types of bluff bodies. 

Figures 47 and 48 show the variation of the drag and 

lift coefficients as a function of time. The former is 

based on the integration of pressure and the latter on 

the rate of change of Impulse. The drag coefficient 

calculated through the use of the rate of change of 

impulse is somewhat larger than that obtained through the 

integration of the Instantaneous differential-pressure 

distribution.  This is due to the fact that the Impulse 
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Fig.  48    Drag Coefficient Calculated fron the Rate of Change of Impulse 
(Case No.  1 for the Model A) 
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expression Includes the rate of change of circulation 

between two successive time steps whereas the pressure 

expression does not. It Is a well-known fact that In 

real fluids the memory of the fluid resides In Its 

vortlclty. Whereas In Invlscld flows there Is no memory 

and the dynamic characteristics of the flow (pressures 

and forces) are functions of only the Instantaneous state 

of the flow. The analysis presented herein Is for an 

Invlscld fluid even though the phenomenon concerns the 

motion of a real fluid. The question of whether the rate 

of change of circulation should be Included or excluded 

In the discrete vortex analysis (first discussed by 

Sarpkaya 1968) Is an unsettled Issue. It appears that 

only the comparisons with experiments can clarify the 

question. 

Figure 47 and 48 also show that d rises rapidly 

(due to the rapid accumulation of vortlclty In the 

growing vortices) and begins to decrease as the vortices 

develop under the Influence of a constant ambient 

velocity. Then the force decreases sharply at the onset 

of deceleration and goes through zero near the middle of 

the deceleration period (T* = 11). The force acquires 

Its largest negative value towards the end of the 

deceleration period. Subsequently, the force gradually 

decreases to zero. 
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Also shown in Figs. 47 and 48 is the variation of 

the lift force. It is negligible even in the later 

stages of the motion. This is primarily due to the fact 

that there is not sufficient time for the development of 

alternate vortex shedding either during the period of 

steady flow or during the period of rapid deceleration. 

Figure 49 shows a comparison of the calculated 

(through pressure integration) and measured drag 

coefficients. In general the agreement between the 

calculated and the measured drag coefficient is quite 

good. In the time intervals between 13 and 16 and 

between 19 and 22, the calculated d is somewhat larger. 

The primary reasons for this are as follows. In the said 

time intervals, the drag coefficient is relatively small 

and the viscous and turbulent effects are Important in 

diffusing the vortices. Furthermore, experiments have 

shown | see Section 3.1 ) that the deceleration period is 

accompanied with strong three-dimensional Instabilities 

in the vortices. Thus, the relatively small drag force 

occurring during the deceleration period is an integrated 

average of the effects of this three-dimensional 

instability on the pressure distribution. This cannot be 

ta)cen into consideration in the numerical analysis. It 

is possible to bring the calculated and measured values 

into closer agreement in an ad hoc manner by introducing 
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Fig. 49 Corparison of the Calculated and Measured Drag Coefficients 
(Case No. 1 for the Model A) 
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a small artificial reduction in circulation. This would 

account indirectly for the effects of the three- 

dimensional instability. This hcs been avoided in the 

present analysis in order to keep the discrete vortex 

analysis as pure and simple as possible. Figure 49 also 

shows that the calculation of the drag coefficient 

through the integration of pressure is superior to that 

through the use of the rate of change of impulse. 

Figure bU snows a comparison of the measured and 

calculated drag coefficients for the second ambient 

velocity history [Eqs. (40a)-(40c)]. Once again the 

measured and calculated drag coefficients are in good 

agreement, except in the region towards the end of the 

deceleration period. The possible reasons for this have 

already been discussed above. 

Figures 51 through 53 show a comparison of the 

calculated and photographed flow fields at corresponding 

times (T* = 6.05, 8.55, and 16.30). The agreement 

between the two flow fields is indeed very good, 

including the regions of secondary separation. 

The objective of the present analysis was not the 

exact duplication of the experimental data but rather the 

development of a robust computer code based on the 

discrete vortex analysis with which numerical experiments 

can be conducted with confidence.  The results presented 
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Fig.   50   Catparison of the Measured and Calculated Drag Coefficients 
(Case No.  2 for the Model A) 
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Fig. 51 Canparison of the Flow Fields at T* = 6.05 
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Fig.   52   Cortparison of the Flow Fields at T* = 8.55 
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herein show that this objective has been achieved as far 

as the Model A is concerned. 

6.2  Model B 

The calculations were carried out for a 

representative, time-dependent, normalized velocity, 

given by 

U/Uo = 1  for  T* < 10.2 ( 41a) 

U/U0 = 0.5 + 0.5 cos[0.5233 (T* - 10.2)]       {41b) 

for 10.2 < T* < 16.28 

For this profile (see Fig. 54), the flow begins to 

decelerate at T* = 10.2 and the velocity of the ambient 

flow reduces to zero at T* = 16.28. 

The computer program provided, at times specified, 

the positions of all the vortices, the rate of shedding 

of vorticity from the tips of the camber, the velocity 

distribution on the upstream and downstream faces of the 

camber, the total and differential pressure 

distributions, and the force coefficients. 

Figures 55 through 6(1 show, at T* = 6.00, 10.4, 

13.4, 14.9, 19.4, and 23.9, the evolution of the wake and 

the differential pressure distribution. It is seen that 

the characteristics of the flow develop symmetrically 
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prior to the onset of deceleration (at T* = 10.20, see 

Figs. 54 ana 56) and the differential pressure Is 

positive everywhere (i.e., the pressure inside the camber 

is larger than that outside) . 

Towards the middle of the deceleration period (see 

Figs. 54 and 57 at T* = 13.40), the differential pressure 

near the axis of the camber becomes increasingly 

negative. The reason for this is that the deceleration 

of the flow brings the vortices closer to the camber. As 

noted earlier, had the model B been flexible the central 

part of the camber would have collapsed as a result of 

the particular deceleration it is subjected to. 

For T* larger than about 14 (for the ambient flow 

under consideration), the velocities induced at the 

downstream edges of the camber by the large vortices 

moving towards the camber give rise to oppositely-signed 

vorticity. This, in turn, leads to the rapid growth of 

the secondary vortices (see Fig. 58 at T* = 14.90). The 

secondary vortices are relatively weaker than the primary 

vortices partly because they have been in existence only 

for a short time and partly because the vorticity flux is 

not as large as that in the primary shear layers. The 

primary and secondary vortices on each side of the camber 

form a counter-rotating couple and remove themselves 

rapidly from the field under the influence of their 
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mutual induction velocity (see Figs. 59 and 60 ). 

Subsequently, the absolute value of the differential 

pressure begins to decrease (see Fig. 59). Eventually, 

the differential pressure reduces to zero everywhere on 

the camber as the conditions approach those of a body in 

a fluid at rest (see Fig. 60). 

Figure 61 shows a comparison of the calculated 

(through pressure integration) and measured drag 

coefficients as a function of T*. It is seen that Cd 

rises rapidly (due to the rapid accumulation of vorticity 

in the growing vortices). Then the measured 'orce 

decreases sharply at the onset of deceleration and goes 

through zero at T* = 12.3, as the magnitude of 

deceleration increases towards its maximum vaJue (see 

Fig. 54 ). The measured force acquires its largest 

negative vnlue at about T* = 14, as the magnitude of the 

deceleration begins to decrease. Subsequently, the 

measured force gradually decreases to zero. 

The calculated d also goes through zero at T* ■ 12 

but then rises to a relatively large plus value at the 

end of the deceleration period (T* ~ 15.5). 

Subsequently, it crosses zero at T* = 17 and gradually 

approaches zero from a relatively large negative minimum. 

It is clear from the foregoing that the calculated 

and measured drag coefficients are not in good agreement 
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Flg. 61  Comparison of the measured and Calculated 

Drag Coefficients (Model B) 
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after the second half of the deceleration period (see T* 

= 13.5 in Figs. 54 and 61). There are three possible 

reasons for this disagreement. First, for T* > 13 the 

drag coefficient is relatively small and the viscous and 

turbulent effects are important in diffusing the vortices 

(assumed to be point vortices in the analysis). Second, 

the experiments have shown that the deceleration period 

is accompanied with strong three-dimensional 

instabilities in the vortices. Thus, the relatively 

small drag force occurring during the deceleration period 

is an integrated average of the effects of this three- 

dimensional instability on the pressure distribution. 

The third reason for the said differences is thought 

to be the occurrence of additional separations behind the 

camber. As noted in connection with the discussion of 

the experimental results, the return of the primary 

vortices to the camber gives rise to separations on the 

back face of the camber, during part of the deceleration 

period (in the interval 11 <T* < 14.5). These precede 

the occurrence of secondary separations at the tips 

(which occur at T* > 14.5) and are far more pronounced 

for cambers with large included angles (180 and 2 40 

degrees) . The separation on the downstream face of the 

camber has not been included in the analysis in order to 

minimize time and to perform the calculations with a 

desk-top computer.  It is clear that the effect of such 
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separations Is to produced oppositely-signed vorticity, 

reduce the strength of the primary vortices, and minimize 

the effect of the subsequent separation and vortex 

formation at the tips of the camber. This has not yet 

been taken into consideration in the numerical analysis. 

It is possible to bring the calculated and measured 

forces into closer agreement by introducing a small 

artificial reduction in circulation in order to account 

(albeit indirectly) for the effects of the three- 

dimensional instability. This has been avoided in the 

present analysis partly to keep the discrete vortex 

analysis as pure and simple as possible, partly to 

understand the fundamental physical reasons, and partly 

to discover the shortcomings of the numerical methodology 

leading to the differences between the measured and 

calculated forces. 

The numerical simulation of the behavior of flow 

during the deceleration period (occurrence of back-face 

separation, followed by tip separation) emerges as an 

important and challenging problem. This is currently 

under investigation. Suffice it to note that for cambers 

with relatively small included angles (e.g., the model A) 

the effect of the back-face separation is negligible. 

Thus, the comparison of the difference between the 

measured and calculated forces for the model A (Figs. 49 
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and 50) with that of the model B (Fig. 61 ) shows that 

both the back-face separation and the three-dimensional 

Instability play Important and additive roles during the 

deceleration period. 

The calculations have also shown that the lift force 

Is negligible even In the later stages of the motion. A 

similar result was found for the model A. This Is 

primarily due to the fact that there Is not sufficient 

time for the development of alternate vortex shedding 

either during the period of steady flow or during the 

period of rapid deceleration. 

Figure 62 shows a sample comparison of the 

calculated and photographed flow fields at corresponding 

representative times (T* = 10.4, 13.4, and 14.9). The 

agreement between the two flow fields, as judged by the 

positions of the vortices. Is Indeed very good. The 

comparison of the vortex strengths at corresponding times 

Is left for future studies. 

The numerical and experimental studies with the 

model B have shown that the measured and calculated 

forces agree quite well from the time of Inception of the 

flow to the early stages of the deceleration period. 

There are, however, some Important differences between 

the measurements and predictions during the remainder of 

the deceleration period and during the period for which 
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the velocity of the ambient flow is zero. The reasons 

for these differences have been discussed in detail. 

They will be the subject of further studies. As in the 

case of the model A, the lift force was found to be 

negligible. Finally, it has been shown, through the use 

of representatives plots and photographs, that the 

kinematics of the flow field is well represented by the 

numerical analysis, 

6.3  Model C 

The calculations were carried out for a 

representative, time-dependent, normalized velocity, 

given by 

U/Uo = 1  for  T* < 10 (42a) 

U/U0 = 0.5 + 0.5 cos[0.34 (T* - 10)] (42b) 

for 10 < T* < 19.25 

For this profile (see Fig. 63), the flow begins to 

decelerate at T* = 10 and the velocity of the ambient 

flow reduces to zero at T* = 19.25. 

The computer program provided, at times specified, 

the positions of all the vortices, the rate of shedding 

of vorticity from the tips of the camber, the velocity 

distribution on the upstream and downstream faces of the 
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camber, the total and differential pressure 

distributions, and the force coefficients. 

Figures 64 through 70 show, at T* = 2.37, 4.12, 

7.77, 9.78, 12.99, 15.34, and 17.71, the evolution of the 

wake (in two scales) and the differential pressure 

distribution. It is seen that the characteristics of the 

flow develop symmetrically prior to the onset of 

deceleration (at T* = 10, see Figs. 63 and 67) and the 

differential pressure is positive everywhere (i.e., the 

pressure inside the camber is larger than that outside). 

Towards the first quarter of the deceleration period 

(see Figs. 63 and 68 at T* = 13), the differential 

pressure near the axis of the camber becomes increasingly 

negative. The reason for this is that the deceleration 

of the flow brings the vortices closer to the camber. As 

noted earlier, had the model C been flexible the central 

part of the camber would have collapsed as a result of 

the particular deceleration it is subjected to. 

For T* larger than about 16 (for the ambient flow 

under consideration), the velocities induced at the 

downstream edges of the camber by the large vortices 

moving towards the camber give rise to oppositely-signed 

vorticity. This, in turn, leads to the rapid growth of 

the secondary vortices (see Fig. 70 at T* = 17.71). The 

secondary vortices are relatively weaker than the primary 

150 



POSITION OF VORTICES 

rvj 

(N- 

UT/C-2.37 

-1——i- 
-2      0 

x/c 
•18  -16    -14   -12   -10    -9 10 14      16 

DIFFERENTIAL PRESSURE 

-25 0 

THETfi 
100 125 

Fig. 64 Velocity Field and the Differential Pressure 
Distribution at T* = 2.37 (Model C) 

151 



POSITION Of VORTICES 

o 
■s 
>- *3h 

UT/C-4.I2 

T    ■—:—'—r 
•it   -16   -M    -12   -10    -9     -6     -«-2      0       2 

X/C 
9      10      12      M      IS      18 

DIFFERENTIAL PRESSURE 
(O-l 

-25 0 

THETfl 

r T 
50 123 

Fig.   65     Velocity Field and the Differential  Pressure 
Distribution at T*  =  4.12   (Model  C) 

152 



POSITION OF VORTICES 

u o- 

UT/C-7.77 

-i—'—:—'—i—'—i—'—i—■—i 

8       10      L2      M      16      16 •18   -16   -H   -12   -10    -8     -6     -i     -2 

X/C 

DIFFERENTIRL PRESSURE 

-25 0 

THETfl 
25 SO 

-r 
75 125 

Fig. 66  Velocity Field and the Differential Pressure 
Distribution at T* = 7.77 {Model C) 

153 



POSITION OF VORTICES 

(M- 

CJ a-\ 

c   m 

U3 
I 

'S >J'. 
'??:• 

^^:- -^../,•;'' ^ 

'—:—■—i—'—\—'—i   ■    !—'—i— 

■18  -16   -M   -12   -10    -8     -6 

..•'••.  ' * .. 

•• t 

-2      0 

x/c 
8      10      12     11      16      16 

DIFFERENTIRL PRESSURE 

-i 1 r 
■125      -100 -75 -SO 

Wfl 

Fig. 67  Velocity Field and the Differential Pressure 
Distribution at T* = 9.78 (Model C) 

154 



POSITION OF VGRTICCS 

u 

IO~i 

a 

ri 

•» ; si 

TT ————, , ^—, , ,—,—p- 

•II  -16   -M   -12   -10     -3     -S 
 ,—^—,—_ —:—|—I—i—|—'—i 1 

10      12      M      16      18 -1     -2      0 

x/c 

DIFFERENTIAL PRESSURE 

THElTa 

Fig. 68  Velocity Field and the Differential Pressure 
Distribution at T* = 12.99 (Model C) 

155 



POSITION OF VORTICLO 

>- 

o^ 

■AiVt «if.?. 

i»ie*\i 

-19   -16   -M    -12   -10    -8     -S -2      Q 

X/C 
12      14      16      18 

DIFFERENT Ini PRESSURE 

Fig.   69     Velocity Field and  the Differential  Pressure 
Distribution at T*  =  15.34   (Model C) 

15£ 



CJ 

POSITION OF VORTICES 
• • •* ••     •   • •      •     - 

U3- 

• 
N\v/ 

rg- -4$^ 
> J 

o- 
:& 

*            •         ■ 

y . 

I »    , •   ••    * •• 

I 

10. 
i —'—i—'—i—i—i—•—i—i—i—•—i—'—r——i—■—i—'—\—'—\—— 

-18  -16   -H   -12   -10    -8     -6     -1     -2      0       2       4       6       9       10     12     H      16      18 
X/C 

DIFFERENTIAL PRESSURE 

Fig.   70    Velocity Field and the Differential  Pressure 
Distribution  at  T*  =  17.71   (Model   C) 

157 



0 

^^v^ j.** 

V V-»' r»*/ 
^ 

(AT 

ü v 

N 
30 

(M. 

k 

► 

r r 

r r T 

T T r 

A 

k 
I 
H 
K 

I» 

^ 

t 
r r r 

r r 

^ 

^ ^ ^ 
r r r 
T r T r »■ ♦ 

t.    A 

>    > 

*    1- 

► 

i. t. 
4.   *. 

*       4      ■!      <      *      *       , 

, V   V   V   It   *   Ir   *   k 

r       ,       r      *       r       r      r      >■ 

^   k   k   k 

,».*<•»---' 
-*-*-*.*--^* A  ^ 

-   - 

,   ,   ,   .   . 

. - » . 
A « A « 

A < 41 <( 

4 4 4. A 

<    T    ▼ ▼    T     ▼ ▼    T    T    T    T   T    < 

, 9 W 0 4 4 

v  T  *  1 4 

W  T 9 4 1 

»  r  T  f -f 
» T r -r f 

• » ^ r -r -r 

»■«■rrfrrrrrrrrr- 

^^^^^^^^^^^^^f 

4'f'l44AAA*jt 
* <f 4 4 A A A 

A A 

4 A 

4 4 

4 4 
^ ^ 

^ ^ N ^ 
k N N h ^ N 

* Ik K K S N ^ 

-9 -3 

x/c 

Flg.    7T    Velocity Field at  T* =  20   (Model  C) 

158 



vortices partly because they have been In existence only 

for a short time and partly because the vortlclty flux Is 

not as large as that In the primary shear layers. The 

primary and secondary vortices on each side of the camber 

form a counter-rotating couple and remove themselves 

rapidly from the field under the Influence of their 

mutual induction velocity (see Fig. 71 at T* = 20). 

Subsequently, the absolute value of the differential 

pressure begins to decrease. Eventually, the 

differential pressure reduces to zero everywhere on the 

camber as the conditions approach those of a body in a 

fluid at rest. 

Figure 72 shows a comparison of the calculated 

(through pressure integration) and measured drag 

coefficients as a function of T*. The agreement between 

the two Cd values is not satisfactory, even during the 

period prior to the onset of deceleration. The 

fundamental reason for this disagreement is that not 

enough physics has yet been built into the numeric'.l 

model to deal with either the boundary layer development 

during the early stages of the motion or with the back- 

face separation during the later stages of the motion. 

Unlllce the previous cases, the initial rise in the 

measured drag Is followed first by a sharp decrease and 

then by a rise to a larger maximum. Subsequently,  the 
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Flg. 72  Comparison of the measured and Calculated 

Drag Coefficients (Model C) 
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drag coefficient decreases rapidly at the onset of 

deceleration, goes through zero near the middle of the 

deceleration period, and through a relatively small 

minimum (negative) value at the end of the deceleration 

period (see Figs. 63 and 72). Subsequently, d gradually 

decreases to zero. 

Figure 73 shows a sample sequence of the pictures 

depicting the growth and motion of the vortices behind 

the Model C (see Section 3.3). It is clear from th? first 

few frames that the flow does not separate Immediately at 

the sharp edges of the camber as in the previous two 

cases. The separation begins at the bottom stagnation 

point (see the 4th and 5th frames) and leads to the 

formation and growth of two small vortices (see the 

frames 7-12). The Initial rise of the drag is partly due 

to the acceleration of the flow and partly due to the 

formation of these two small vortices. Subsequently, 

these vortices move towards the rear of the camber (the 

time at which the drag decreases sharply) and the 

separation points move rapidly to the edges of the camber 

(see frames 13 and 14). There is a time period during 

which there are four vortices in the wake (the two small 

vortices and the two larger ones, resulting from the 

separation at the sharp edges), (see frames 12-16). 

Subsequently, the small scale vortices are overtaken by 
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Fig- 73  Evolution of the Flow Field about the Model C 
(Continued) 
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Fig. 73  Evolution of the Flow Field about the Model C 
(Continued) 
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Fig. 73  Evolution of the Flow Field about the Model C 
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or merge with the larger ones (see frames 17-18). This 

merging takes place in a very short time (in about 0.03 

seconds) . The remaining vortices grow rapidly and give 

rise to two relatively large regions of secondary 

separation near the rear edges of the camber (see e.g., 

frame 21). The vortices continue to grow until the onset 

of deceleration (at about the 22nd frame). Subsequently, 

the vortices move upward and sideways (see e.g., the 23rd 

and 24th frames). It is important to note that separa- 

tion during the period of deceleration occurs not only at 

the sharp edges but also at the downstream face of the 

camber (at about 30 degrees downstream from the edges) 

partly due to the presence of the large after body (240 

degree arc) and partly due to the large velocities 

induced on it. 

The foregoing explains in part the reason for the 

differences between the measured and calculated forces 

even during the early stages of the motion. The 

disagreement between the measured and predicted d values 

during the later stages of the motion is partly due to 

the carry-over effect of the earlier stages of the 

numerical simulation (history effects dictated by the 

model), partly due to the development of strong three- 

dimensional instabilities in vortices during the 

deceleration period, and partly due to the occurrence of 
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back-face separation. As noted earlier, the effect of 

the back-face separation becomes progressively more 

pronounced as the included angle of camber increases. 

This is true for all bluff-body problems where the 

afterbody (the part of the body beyond the mobile or 

fixed separation points) is large. In this sense, the 

model C becomes one of the most challenging bluff-body 

shapes as far as the computational methods with vortices 

are concerned. The problem is further compounded by the 

fact that the ambient flow is not steady and the vortices 

return to the body during the period of deceleration. 

The understanding of the attendant consequences of this 

wake-return in numerical analysis (additional separa- 

tions) and in nature (parachute collapse) constitute the 

essence of the investigation. Sufficient physics will 

have to be incorporated into the numerical model to deal 

with these complex problems on a rational basis. The 

introduction of an artificial reduction in circulation in 

order to account (albeit indirectly) for the effects of 

the three-dimensional instability is not considered to be 

one of the rational approaches, however small the 

required reduction may be. This has been avoided in the 

present analysis partly to keep the discrete vortex 

analysis free from ad hoc assumptions, partly to under- 

stand the fundamental physical reasons, and partly to 
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discover the shortcomings of the numerical method leading 

to the differences between the measured and calculated 

forces. 

Figure 74 shows a sample comparison of the calcu- 

lated and photographed flow fields at corresponding 

representative times |T* = 8.75, 11.42, and 13.83). The 

agreement between the two flow fields, as judged by the 

positions of the vortices. Is fair. The comparison of 

the vortex strengths and velocities at corresponding 

times Is most desirable for more definitive conclusions. 

It should be noted, for sake of completeness, that 

the lift force for the model C also was found to be 

negligible. As noted earlier, this Is primarily due to 

the fact that there Is not sufficient time for the 

development of alternate vortex shedding either during 

the period of steady flow or during the period of rapid 

deceleration. 
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7    CONCLUSIONS 

A theoretical and experimental investigation of an 

Impulsively-started uniform flow, decelerating at 

prescribed rates, about two-dimensional cambered plates 

with included angles of 120, 180, and 240 degrees has 

been carried out. 

The results have shown that: 

1. For a given camber, the drag coefficients prior 

to the onset of deceleration are nearly identical. The 

drag coefficients after the onset of deceleration are 

simply shifted in time by an amount egual to the 

difference between the durations of their steady states. 

2. For the Models A (120 degree camber) and B (180 

degree camber), the drag coefficient decreases rapidly at 

the onset of deceleration, goes through zero near the 

middle of the deceleration period, and through a negative 

value at the end of the deceleration period. Then, the 

drag coefficient gradually decreases to zero. 

3. For the Models A and B, the flow separates at 

the sharp edges right from the start and remains there 

throughout the rest of the motion. Two, highly stable, 

symmetrical, primary vortices form and continue to grow 

during the periods of initial acceleration and subsequent 

steady fluid motion. The regions of secondary flow near 

the rear edges of the camber are quite small. During the 

period of deceleration, the vortices move towards the 
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camber, develop three-dimensional instabilities, and give 

rise to oppositely-signed circulation at the edges of the 

camber. Subseguently, the vortices continue to move 

sideways and the force acting on the camber reduces to 

zero as the vortices are diffused by both molecular and 

turbulent diffusion. 

4. For the Model C (240 degree camber), the initial 

rise in the drag coefficient is followed by a sharp 

decrease and then by a rise to a larger maximum. 

Subsequently, the drag coefficient decreases rapidly at 

the onset of deceleration, goes through zero near the 

middle of the deceleration period, and through a 

relatively small (negative) minimum value at the end of 

the deceleration period. 

5. For the Model C, the flow does not separate 

immediately at the sharp edges of the camber. The 

separation begins at the bottom stagnation point and 

leads to the formation and growth of two small vortices. 

Subsequently, these vortices move towards the rear of the 

camber (the time at which the drag coefficient decreases 

sharply) and the separation points move rapidly to the 

edges of the camber. Then two large primary vortices 

develop and quickly swallow the two small ones. As in 

the case of the Models A and B, the vortices become three 

dimensional during the period of flow 
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deceleration. This phenomenon takes place even when the 

total drag force acting on the parachute is still 

positive. 
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